Matsue Symposium (Pre Symposium)

August 25-26, 1968 (S43)
Shimane University, Matsue
Holonomy groups of Finsler spaces
M. Matsumoto

    [1] M. Matsumoto, On Finsler connections. Introduction to global theory of Finsler spaces
    [2] M. Hashiguchi, On holonomy groups. How to consider the holonomy group of Finsler space?
    [3] Y. Ichijyō, Geometry of projective bundles and Finsler metrics.

1. Ōhara Symposium

September 24-26, 1969 (S44)
The family guest house "Noda", Ōhara, Kyoto
Models of Finsler spaces
M. Matsumoto
K. Eguchi, M. Hashiguchi, S. Hōjō, Y. Ichijyō, T. Ishihara, I. Izumi, A. Kawaguchi, H. Kawaguchi, S. Kikuchi,
S. Kitamura, M. Kurita, M. Matsumoto, Y. Nagata, Y. Nasu, T. Okada, K. Ōkubo, Y. Takano, Y. Tashiro

    [1] K. Eguchi, General projective connections and Finsler metric.
    [2] M. Hashiguchi, On G.Soós "Über einfache Finslerische Räume (1960)" and others.
    [3] M. Matsumoto, Isotropic Finsler spaces.
    [4] M. Matsumoto, On letters of the answer (to Matsumoto's letter of June 9, 1969, asking the opinions about models of Finsler spaces).
    [5] M. Hashiguchi, On determinations of Finsler connections by deflection tensor fields.

2. Fujisawa Symposium

October 4-6, 1970 (S45)
Segami Institute of Technology and the hotel "Kōyō-sō", Fujisawa Special Finsler spaces
M. Matsumoto, M. Yoshida
M. Azuma, K. Eguchi, M. Gama, M. Hashiguchi, S. Hōjō, Y. Ichijyō, T. Ishihara, I. Izumi, A. Kawaguchi,
H. Kawaguchi, S. Kikuchi, S. Kitamura, M. Kurita, M. Matsumoto, M*. Matsumoto, Y. Nagata, Y. Nasu, T. Okada,
K. Ōkubo, Y. Sato, C. Shibata, H. Shimada, Y. Takano, K. Tandai, S. Watanabe, H. Yasuda, M. Yoshida

    [1] M. Hashiguchi, On two-dimensional Finsler spaces.
    [2] H. Izumi, On some problems in Finsler geometry.
    [3] M. Matsumoto, On three-dimensional Finsler spaces and Deicke's and Brickell's theorems.
    [4] T. Okada, The infinitesimal holonomy algebra of V-connection.
    [5] M. Matsumoto, On Finsler spaces whose curvature tensors are of some special forms.

 * A special meeting

March 12-18, 1971 (S46)
Research Institute for Math. Sci., Kyoto University

    [1] M. Matsumoto, On Finsler connections.
    [2] H. Izumi, Infinitesimal non-holonomic transformation in a line element space.
    [3] M. Matsumoto, How to define the Lie derivative with respect to a Finslerian vector field?
    [4] M. Hashiguchi, On Shing's paper "On the symmetric properties in some Finsler spaces, Acta Math. Sinica 9 (1959), 191-198."

3. Matsuyama Symposium

October 19-21, 1971 (S46)
Ehime University and the hotel "Shirasagi-sō", Matsuyama
Finsler geometry
M. Matsumoto, Y. Nagata
M. Azuma, K. Eguchi, M. Hashiguchi, S. Hōjō, Y. Ichijyō, S. Ide, T. Igarashi, T. Ishihara, I. Izumi, A. Kawaguchi,
H. Kawaguchi, M. Kawaguchi, S. Kawaguchi, U-H. Ki, S. Kikuchi, S. Kitamura, M. Matsumoto, Y. Nagata, T. Okada,
K. Ōkubo, Y. Sato, C. Shibata, H. Shimada, S. Watanabe, H. Yasuda, M. Yoshida

    [1] A. Kawaguchi, Nonlinear connections and Finsler connections.
    [2] H. Kawaguchi, On a special Finsler space.
    [3] M. Matsumoto, A theory of general transformations of Finsler spaces.
    [4] K. Ōkubo, Minkowski spaces and Finsler spaces.
    [5] H. Yasuda, On Finsler spaces as Riemannian manifolds with torsions.

4. Fukui Symposium

October 18-20, 1972 (S47)
Fukui University, Fukui and the hotel "Rosen-sō", Awara
Finsler geometry
M. Matsumoto, S. Kitamura
M. Azuma, K. Eguchi, M. Hashiguchi, S. Hōjō, Y. Ichijyō, S. Ide, T. Igarashi, T. Ishihara, I. Izumi, A. Kawaguchi,
H. Kawaguchi, S. Kawaguchi, T. Kawaguchi, S. Kikuchi, S. Kitamura, M. Matsumoto, Y. Nagata, T. Okada, T. Ohkubo,
K. Ōkubo, C. Shibata, H. Shimada, S. Watanabe, H. Yasuda, M. Yoshida

    [1] M. Azuma, An alternative proof for Brickell-Deicke's theorem.
    [2] K. Eguchi, Banach Manifolds and Finsler metrics.
    [3] S. Hōjō, A special two-dimensional Finsler space.
    [4] T. Ishihara, On the Carathéodory distance and the Kobayashi distance.
    [5] S. Kawaguchi, On special Kawaguchi spaces.
    [6] T. Kawaguchi, Differential geometry and engineering dynamical systems.
    [7] S. Kikuchi, Some remarks on the treatment of the line-elements in a Finsler space.
    [8] M. Matsumoto, A theory of three-dimensional Finsler spaces.
    [9] S. Watanabe, On hypersurfaces in a Minkowski space.

5. Okayama Symposium

October 15-17, 1973 (S48)
Okayama University, Okayama
Finsler geometry
M. Matsumoto, Y. Nasu
K. Eguchi, M. Hashiguchi, S. Hōjō, Y. Ichijyō, S. Ide, K. Igarashi, M. Ikeda, H. Izumi, I. Izumi,
S. Kitamura, T. Maebashi, M. Matsumoto, Y. Nagata, Y. Nasu, T. Okada, K. Ōkubo, C. Shibata, Y. Takano, E. Tubota
 
    [1] K. Eguchi, Finsler spaces admitting a concurrent vector field.
    [2] H. Izumi, Pseudo-polar coordinates in a Finsler space.
    [3] M. Hashiguchi, Conformal transformations of Finsler spaces.
    [4] K. Ōkubo, Finsler spaces such that L²Shijk=S(hhjhik-hhkhij), hij=gij-lilj.
    [5] C. Shibata, Applications of Finsler geometry to analytic dynamics.
    [6] Y. Takano, Some problems on the field theory of Finsler spaces.

6. Ōmi-hachiman Symposium

October 16-18, 1974 (S49)
The hotel "Chōmei-sō", Ōmi-hachiman
Finsler geometry
M. Matsumoto, T. Okada
M. Azuma, K. Eguchi, M. Hashiguchi, S. Hōjō, Y. Ichijyō, T. Ishihara,  H. Izumi, A. Kawaguchi, H. Kawaguchi,
T. Kawaguchi, M. Matsumoto, Y. Nagata, S. Numata, T. Okada, K. Ōkubo, C. Shibata, H. Shimada, Y. Takano, H. Yasuda

    [1] Y. Ichijyō, Banach manifolds and Finsler metrics.
   
[2] H. Izumi, Concircular transformations of a curve with a Finsler  metric.
   
[3] M. Hashiguchi, On Wagner's generalized Berwald spaces.
   
[4] A. Kawaguchi, On a Finsler space whose fundamental function satisfies  an algebraic equation.
   
[5] H. Kawaguchi, A Minkowski space with a special indicatrix.
   
[6] T. Kawaguchi, Finsler curvatures in engineering dynamical systems.
   
[7] M. Matsumoto, Finsler spaces satisfying  the  T- and  BP-conditions.
   
[8] Y. Nagata, Some remarks on the formulas of Frenet in a three-dimensional Finsler spaces.
   
[9] S. Numata, On the curvature tensor Shijk and the tensor Thijk of generalized Randers spaces.
   
[10] Y. Takano, On a variation principle in Finsler space.

7. Atami Symposium

November 20-22, 1974 (S49)
The hotel "Ryūsen-kaku", Atami
Finsler spaces and Kawaguchi spaces
M.Matsumoto, S. Watanabe
M. Azuma, M. Hashiguchi, S. Hōjō, Y. Ichijyō, S. Ide, H. Izumi, A. Kawaguchi, H. Kawaguchi, S. Kawaguchi, T. Kawaguchi,
S. Kikuchi, M. Matsumoto, S. Numata, T. Okada, K. Ōkubo, Y.Sato, H. Shimada, M. Shimbo, K.Shirai, S. Watanabe,
T. Yamanoi, H. Yasuda, M. Yoshida
 
  
[1] H. Izumi, On conformal transformations of Finsler metrics.
    [2] M. Hashiguchi, On generalized Berwald space.
   
[3] A. Kawaguchi - M. Yoshida, On a Finsler space whose fundamental function satisfies an algebraic equation.
    [4] H. Kawaguchi, On a special Finsler space.
    [5] S. Kawaguchi, On special Kawaguchi spaces.
    [6] T. Kawaguchi, Finsler quantities in engineering dynamical systems.
    [8] Y. Sato - M. Kawaguchi, Some studies on crossed extensors.
    [9] H. Shimada, On Randers spaces with Rijhk=0.

8. Ōmi-hachiman Symposium

June 2-4, 1975 (S50)
The hotel "Chōmei-sō", Ōmi-hachiman
Finsler geometry
M. Matsumoto, T. Okada
M. Azuma, K. Eguchi, M. Hashiguchi, S. Hōjō, Y. Ichijyō, S. Ide, M. Ikeda, R.S. Ingarden, T. Ishihara, T. Iwai, H. Izumi,
A. Kawaguchi, H. Kawaguchi, M. Kawaguchi, S. Kawaguchi, T. Kawaguchi, S. Kitamura, Y. Matsui, M. Matsumoto,
Y. Nishino, Y. Nagata, S. Numata, T. Okada, K. Ōkubo, C. Shibata, H. Shimada, M. Shimbo, Y. Takano, H. Umegaki,
S.Watanabe, H. Yasuda, M. Yoshida   
 
   [1] R.S. Ingarden, Differential geometry and Physics.

    [2] H. Izumi, On the invariant conformal curvature tensors in Finsler spaces.
    [3] A. Kawaguchi, On some standpoint for the theory of Finsler spaces.
    [4] T. Kawaguchi,  Finsler curvatures in the engineering dynamical systems.
    [5] M. Matsumoto, Differential geometry of indicatrices.
    [6] S. Numata, On Landsberg spaces of scalar curvatures.
    [7] Y. Takano, Attempts on the equations of the gravitational field and the variation principle in Finsler spaces.
    [8] H. Yasuda, On Finsler spaces with Randers metric.

9. Yugashima Symposium

October 2-5, 1975 (S50)
The hotel "Suiran-
sō", Yugashima and the hotel "Kokei-sō", Syuzen-zi
Finsler spaces
M. Matsumoto, S. Watanabe
M. Hashiguchi, S. Hōjō, Y. Ichijyō, H. Izumi, A. Kawaguchi, H. Kawaguchi, M. Kawaguchi, S. Kitamura, M. Matsumoto,
Y. Nagata, S. Numata, T. Okada, K. Ōkubo, C. Shibata, S.Watanabe, H. Yasuda, M. Yoshida   

  
[1] M. Hashiguchi -
Y. Ichijyō, On some special (α ,ß)-metrics.
    [2] Y. Ichijyō, Finsler manifolds modeled on a Minkowski space.
    [3] H. Izumi, On the conformal invariants in Finsler spaces.
    [4] A. Kawaguchi, The geometers I have seen in Europe.
    [5] A. Kawaguchi - M. Yoshida,  On a Finsler space whose fundamental function satisfies an algebraic equation.
    [6] M. Kawaguchi, On jet analysis.
    [7] M. Matsumoto, A report on the Colloquium on Differential Geometry held in Debrecen during 28 Aug.-3 Spt., 1975.
    [8] M. Matsumoto, Some topics on Finsler spaces.
    [9] C. Shibata, On Finsler spaces with Kropina metric.
    [10] H. Yasuda, On Finsler spaces  with Randers metric.
    [11] Y. Nagata - K.Q. Kuh, On the curvatures of a vector field on a subspace of a Finsler spaces.
    [12] Y. Nagata, On some geometrical  properties in three-dimensional Finsler space.

10. Ōtsu Symposium

August 8-10, 1976 (S51)
The hotel "Shiga-sō", Ōtsu
To look for old sake-skins, into which new sake may be poured, in Finsler geometry
M. Matsumoto, K. Ōkubo
K. Eguchi, M. Hashiguchi, Y. Ichijyō, T. Ishihara, H. Kawaguchi, M. Matsumoto, S. Numata,
T. Okada, K. Ōkubo, S. Yanagimoto

    [1] Y. Ichijyō, Finsler manifolds with a linear connection.
    [2] T. Ishihara, On W. Damköhler und E. Hopf " Über einige Eigenschaften von Kurvenintegralen und über die Äquivalenz
          von indefiniten mit definiten Variationsproblemen (1947)."

    [3] H. Kawaguchi, Some problems related to Phijk =0.
    [4] M. Matsumoto, From the recent results on strongly non-Riemannian Finsler spaces, and on Finsler spaces with Phijk of special forms.
    [5] M. Matsumoto, On J.M. Wegner "Hyperflächen in Finslerschen Räumens als Transversalflächen  einer Schar von Extremalen (1936)"
          and W. Barthel " Über die Minimalflächen  in gefaserten Finslerräumen (1954)."

    [6] S. Numata, On W. Wrona "Neues Beispiel einer Finslerschen Geometrie (1939)" and W. Wrona "On geodesics of a certain singular
          n-dimensional Finsler spaces (1968)."
   
[7] T. Okada, On G. Granier "Sur l'holonomie des variétés finslériennes (1973)" and J. G. Diaz - G. Granier " Courbure et holonomie des
          variétés finslériennes (1976)."

    [8] K. Ōkubo, On K. Maurin "Eingliedriege Gruppen der homogenen kanonischen Transformationen und Finslerische Räume (1955)".

11. Yamanaka-ko Symposium

October 8-11, 1976 (S51)

The family guest house "Fuji", Yamanaka-ko
Generalized metric spaces
M. Matsumoto, S. Watanabe
K. Eguchi, M. Hashiguchi, Y. Ichijyō, F. Ikeda, H. Izumi, A. Kawaguchi, H. Kawaguchi, S. Kawaguchi, T. Kawaguchi, T*. Kawaguchi, 
S. Kikuchi, M. Matsumoto, P.S. Morey, Y. Nagata, S. Numata, T. Okada, K. Ōkubo, C. Shibata, H. Shimada, M.Shimbo, Y. Takano,
L. Tammásy, S. Watanabe, H. Yasuda, M. Yoshida

  
[1]
Y. Ichijyō, On special Finsler connections with the vanishing hv-curvature tensor.
    [2] H. Izumi, On *P-Finsler spaces, I.
    [3] A. Kawaguchi, On the relation between multi-metric spaces of Gähler  and areal spaces.
    [4] A. Kawaguchi - M. Yoshida, On a Finsler space whose fundamental function satisfies an algebraic equation.
    [5] H. Kawaguchi, The vector field Ai and the 2nd curvature tensor field in Finsler spaces.
    [6] T. Kawaguchi, On some geometrical topics  with reference to the theory of computer programming.
    [7] T*. Kawaguchi, Theory of rheonom invariants in Finsler spaces.
    [8] S. Kikuchi, On some special Finsler spaces.
    [9] M. Matsumoto, On Finsler spaces with 1-form metric and others.
    [10] M. Matsumoto - C. Shibata, On the curvature tensor Rijhk of C-reducible Finsler spaces.
    [11] P.S. Morey, Horizontal constructions of higher degree extensions.
    [12] Y. Nagata, On the geodesic curvature and normal curvature of a vector field on subspaces of a Finsler space.
    [13] Y. Nagata, On geometric significance of D-semiparallel, D-semiparallel and semiconjugated.
    [14] S. Numata, On the torsion tensors Rhjk and Phjk of Finsler spaces with a metric  ds=(gij (x)dxi dxj)1/2+bi (x)dxi.
   [15] T. Okada, Pair connection and its important example.
    [16]
K. Ōkubo, Investigation of r-th order metrics by the method of indicatorization.
    [17] H. Shimada, On Randers spaces of scalar curvature.
    [18] M. Shimbo, A geometrical formulation of asymmetric features in plasticity.
    [19] Y. Takano, On the theory of fields in Finsler spaces.
    [20] L. Tammásy, Euclidian osculation of areal spaces.
    [21] S. Watanabe, Some properties of indicatrices in a Finsler space.
    [22] H. Yasuda, On Finsler spaces with absolute parallelism of line-elements.

12. Akan-ko Symposium

July 29 -August 2, 1977 (S52)
The hotel "Kosui-sō", Akan-ko and the hotel "Taihō-sō", Teshikaga
Finsler spaces and Spaces of higher order
M. Matsumoto, H. Yasuda
M. Azuma, M. Fukui, M. Gama, M. Hashiguchi, S. Hōjō, Y. Ichijyō, T. Igarashi, F. Ikeda, H. Izumi, A. Kawaguchi, H. Kawaguchi,
M. Kawaguchi, T. Kawaguchi, T*. Kawaguchi, S. Kikuchi, M. Matsumoto, P.S. Morey, Y. Nagata, S. Numata, T. Okada, K. Ōkubo,
Y. Sato, C. Shibata, H. Shimada, Y. Takano, S. Watanabe, T. Yamanoi, H. Yasuda, M. Yoshida

    [1] M. Fukui, A note on the indicatrix bundle over a Finsler space.
    [2] M. Gama, On decomposition of recurrent tensor in an areal space An(m) of the submetric class.
    [3] M. Hashiguchi, Some topics from Finsler - geometrical  considerations of the arithmetic, geometric and harmonic means of vector  components.
    [4] Y. Ichijyō, On the Finsler connection associated with a linear connection satisfying Phijk =0.
    [5] Y. Ichijyō, A necessary and sufficient condition for a {V,H}-manifold  to be a locally Minkowski manifold.
    [6] T. Igarashi, On conformal changes on areal spaces.
    [7] F. Ikeda, On two-dimensional Finsler spaces with C|o =0.
    [8] I. Izumi, Report on *P-Finsler spaces.
    [9] A. Kawaguchi, What is an extensor? Why did it hit my mind?
    [10] A. Kawaguchi, On the journal "Tensor": A motive for the first publishment , further developments and the present situation.
    [11] A. Kawaguchi - M. Yoshida, On a Finsler space whose fundamental function satisfies  an algebraic equation.
    [12] T*. Kawaguchi, On multiple parameter extensor calculus of separate order I: Extended point transformation group in multiple parameters.
    [13] S. Kikuchi, On the condition that a space with (α ,ß)-metric be locally Minkowski.
    [14] M. Matsumoto, On properties of C-geodesics.
    [15] M. Matsumoto - S. Numata, On Finsler spaces with cubic metric.
    [16] P.S. Morey, Horizontal contractions as exterior quotients.
    [17] T. Okada, On C-geodesics of a Minkowski space with L(ξi) =(∑ (ξi)p)1/p.
    [18] K. Ōkubo, On a Finsler space whose fundamental function is a p-homogeneous one of two Riemannian metrics.
    [19] Y. Sato - M. Kawaguchi, Tensor analysis and multi-variate analysis.
    [20] C. Shibata, On the curvature tensor Rhijk of Finsler spaces of scalar curvature.
    [21] H. Shimada, On the Ricci tensors of particular Finsler spaces.
    [22] H. Shimada, Some consequences of the Finslerian structure of the space-time with absolute parallelism.
    [23] T. Yamanoi, On curves in the indicatrix bundle over a Finsler space.
    [24] H. Yasuda, On the indicatrix of a Finsler space.

13. Kōya-san Symposium

September 8-11, 1978 (S53)
The temple "Kōmyō-in", Kōya-san
Finsler spaces and Spaces of higher order
M. Matsumoto, S. Hōjō
M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, M. Ikeda, R.S. Ingarden, T. Ishihara, H. Izumi, A. Kawaguchi,
H. Kawaguchi, S. Kikuchi, M. Matsumoto, Y. Nagata, S. Numata, K. Ōkubo, T. Sakaguchi, C. Shibata, H. Shimada, M. Shimbo,
K. Shirai, Y. Takano, Y. Tazawa, S. Watanabe, T. Yamanoi, S. Yanagimoto, H. Yasuda, M. Yoshida

    [1] M. Hashiguchi, On Finsler spaces conformal to locally Minkowskian spaces.
    [2] S. Hōjō, A conclusive theorem on C-reducible Finsle spaces.
    [3] Y. Ichijyō, On the conditions for a {V,H}-manifold to be locally Minkowskian or conformally flat.
    [4] F. Ikeda, On the tensor Tijkl of Finsler spaces.
    [5] R.S. Ingarden, Differential geometry and thermodynamics.
    [6] H. Izumi, On R3-like Finsler spaces.
    [7] H. Izumi - M. Yoshida, On Finsler spaces of perpendicular scalar curvature.
    [8] A. Kawaguchi, Some topics on Finsler geometry.
    [9] H. Kawaguchi, On a characterization of the vector field Ai in a Finsler space.
    [10] S. Kikuchi, On two-dimensional Finsler spaces.
    [11] M. Matsumoto, The indicatrix bundle of a Finsler space.
    [12] S. Numata, On C3-like Finsler spaces.
    [13] K. Ōkubo, On Finsler spaces with (2,n-1) or (n-1,2)-metric.
    [14] H. Shimada, On Finsler spaces with recurrent torsion.
    [15] M. Shimbo, On differential geometry of visual space.
    [16] S. Watanabe - F. Ikeda, On some properties of Finsler spaces based on the indicatrices.
    [17] H. Yasuda, On Landsberg spaces.
  
14. Hakone Symposium

October 2-5, 1979 (S54)
The hotel "Seium-sō", Hakone
Finsler spaces and Spaces of higher order
Y. Ichijyō, H. Izumi
M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda, T. Ishihara, H. Ishikawa, M. Isu, H. Izumi,
A. Kawaguchi, H. Kawaguchi, S. Kikuchi, M. Matsumoto, S. Numata, T. Okada, T. Sakaguchi, Y. Takano, Y. Tazawa,
S. Watanabe, S. Yanagimoto, H. Yasuda, M. Yoshida

    [1] M. Fukui - T. Yamada, On the T-tensor and the semi C-reducibility.
    [2] M. Hashiguchi - T. Varga, On Wagner spaces of W-scalar curvature.
    [3] S. Hōjō, On Finsler spaces with interesting extremal curves.
    [4] Y. Ichijyō, On the G-connections and motions  in a {V,G}-manifold.
    [5] F. Ikeda, On the tensor Tijkl of Finsler spaces, II.
    [6] H. Izumi, On conformal transformations in Finsler spaces.
    [7] A. Kawaguchi, On Finsler spaces and areal spaces.
    [8] H. Kawaguchi, Hypersurfaces of indicatrices normal to vectors Ai.
    [9] M. Matsumoto, Scalar and gradient vector fields of Finsler spaces.
    [10] M. Matsumoto, Direct method to characterize conformally Minkowski Finsler spaces.
    [11] M. Matsumoto, On projectively Minkowski Finsler spaces.
    [12] M. Matsumoto, On S3-like Finsler spaces.
    [13] T. Sakaguchi, On Finsler spaces with Fihjk=0.
    [14] Y. Tazawa, An example of Banach-Finsler structure.
    [15] S. Watanabe - F. Ikeda, On Finsler spaces satisfying  the  C-reducibility condition and the T-condition.
    [16] S. Yanagimoto, A Minkowski space with the norm L=∑ |xi|.
    [17] H. Yasuda, On transformations of Finsler spaces.
    [18] M. Yoshida, On an R3-like Finsler space and its special cases.
    [19] M. Hashiguchi - Y. Ichijyō, Randers spaces with rectilinear geodesics.
    [20] R. Miron - M. Hashiguchi, Metrical Finsler connections.

15. Naruto Symposium

October 5-8, 1980 (S55)
The hotel "Naruto-heights", Maruto
Finsler spaces and Spaces of higher order
Y. Ichijyō, T. Ishihara
T. Aikou, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda, T. Ishihara, M. Isu, H. Izumi, H. Kawaguchi,
M. Kawaguchi, S. Kikuchi, M. Matsumoto, S. Numata, T. Okada, K. Ōkubo, T. Sakaguchi, Y. Sato, C. Shibata, H. Shimada,
Y. Takano, S. Watanabe, T. Yamanoi, H. Yasuda, M. Yoshida

    [1] T. Aikou, On the paths in Wagner spaces.
    [2] M. Fukui, On quasi-C-reducible Finsler spaces.
    [3] M. Hashiguchi, On Miron's generalized Finsler spaces.
    [4] S. Hōjō, Structures of fundamental functions of S3-like Finsler spaces.
    [5] Y. Ichijyō, Almost Hermitian Finsler manifolds.
    [6] F. Ikeda, On S3-like and S4-like Finsler with the T-tensor of a special form.
    [7] H. Izumi, On Lie derivatives in Finsler geometry.
    [8] H. Kawaguchi, C-reducible Finsler spaces of general form.
    [9] M. Matsumoto, Theory of projective changes of Finsler spaces.
    [10] S. Numata, On semi-C-reducible Finsler spaces with constant coefficients and C2-like Finsler spaces.
    [11] T. Okada, Minkowskian product of Finsler spaces.
    [12] K. Ōkubo, On the curvatures of Finsler spaces.
    [13] T. Sakaguchi, Remarks on Finsler spaces with Fhijk=0.
    [14] C. Shibata, On β-changes of Finsler metrics.
    [15] H. Shimada - M. Azuma, The gauge invariants of Randers spaces.
    [16] H. Shimada - C. Shibata, The g-hypercone of a Minkowski space.
    [17] S. Watanabe, Semi-C-reducible Finsler spaces.
    [18] T. Yamanoi - Y. Sato - M. Kawaguchi, Elucidation of  a phenomenon of illusion vision by a model of a metric space.
    [19] H. Yasuda, Transformations of Finsler spaces.
   
  16. Nasu Symposium

November 4-7, 1981 (S56)
The hotel "Haku'un-sō", Nasu
Finsler geometry
M. Hashiguchi, S. Watanabe
M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda, H. Izumi, S. Kajikawa, H. Kawaguchi, S. Kikuchi,
M. Kitayama, M. Matsumoto, S. Numata, T. Okada, K. Ōkubo, T. Sakaguchi, H. Sato, C. Shibata, Y. Tazawa,
S. Watanabe, T. Yamada, H. Yasuda, M. Yoshida

    [1] M. Fukui - T. Yamada, On projective changes of Finsler spaces.
    [2] M. Hashiguchi - T. Aikou, On the paths in generalized Berwald spaces.
    [3] S. Hōjō, Generalization of the Cartan connection.
    [4] Y. Ichijyō, Non-linear connections and almost Hermitian Finsler manifold.
    [5] F. Ikeda, On indicatrices of Finsler spaces (Mn,gij ).
    [6] S. Ikeda, On the covariant differential of spin direction in the Finslerian deformation theory of ferromagnetic substances.
    [7] H. Izumi, On *P-Finsler spaces of scalar curvature.
    [8] H. Izumi, On foundations of mappings of Finsler spaces.
    [9] H. Kawaguchi, Finsler spaces whose indicatrices at every point are rotating surfaces around a vector field on the base manifold, I.
    [10] S. Kikuchi, On connections in the Minkowskian product space of two Finsler spaces.
    [11] M. Matsumoto, Theory of curves of two-dimensional Minkowski spaces.
    [12] M. Matsumoto, A relative theory of Finsler spaces.
    [13] T. Okada, On axioms for the determination of Finsler connection.
    [14] K. Ōkubo, A Riemannian space with an almost tangent structure.
    [15] T. Sakaguchi, On Finsler spaces of scalar curvature.
    [16] H. Sato, On a generalization of Einstein's theory of gravitation.
    [17] C. Shibata, On Randers changes of Finsler metrics.
    [18] Y. Tazawa, An example of Banach-Finsler structure, II.
    [19] S. Watanabe, On metrical Finsler connections of a metrical  Finsler structure.
    [20] H. Yasuda, On transformations of the indicatrix bundle over a Finsler space.
    [21] M. Yoshida, On Finsler spaces with the Berwald curvature tensor of a special form.

17. Nara Symposium  

November 15-18, 1982 (S57)
The hotel "Kasugano-sō", Nara
Finsler geometry
M. Hashiguchi, T. Okada
T. Aikou, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda, H. Izumi, A. Kawaguchi, H. Kawaguchi,
M. Kawaguchi, S. Kikuchi, M. Kitayama, M. Matsumoto, S. Numata, T. Okada, K. Ōkubo, T. Sakaguchi, Y. Sato, C. Shibata, H. Shimada,
Y. Takano, Y. Tazawa, S. Watanabe, T. Yamazaki, S. Yanagimoto, H. Yasuda, M. Yoshida

    [1] M. Hashiguchi, Finsler connections compatible with various Finsler structures.
    [2] Y. Ichijyō, Holonomy mappings, Lie mappings and groups of motions in a Finsler space.
    [3] F. Ikeda, On the v-curvature tensor of generalized metric space (Mn,gij ).
    [4] S. Ikeda, A conformal structure of the gravitational field.
    [5] H. Izumi, On non-holonomic frames in a Finsler space with 1-form metric.
    [6] H. Izumi - M. Yoshida, Remarks on Finsler spaces of perpendicular scalar curvature.
    [7] H. Kawaguchi, Finsler spaces whose indicatrices at every point are rotating surfaces around a vector field on the base manifold, II.
    [8] S. Kikuchi, On the metric function of an S3-like Finsler space.
    [9] M. Matsumoto, Projectively  flat Finsler spaces with constant curvature.
    [10] M. Matsumoto, On Wagner's generalized Berwald spaces of dimension two.
    [11] S. Numata, On a generalized metric gij(x,y)=e2σ (x,y) γ ij.
    [12] T. Okada, On global model of Finsler geometry.
    [13] T. Sakaguchi, Remarks on Finsler spaces with 1-form metric.
    [14] C. Shibata, On relative indicatrix.
    [15] C. Shibata - M. Kitayama, On Kropina spaces of constant curvature.
    [16] H. Shimada, On Finsler spaces with the m-th root metric and Hōjō's generalized Akbar-Zadeh's theorem.
    [17] H. Shimada, On v-transformations of Finsler spaces.
    [18] Y. Takano, Spinor gauge fields.
    [19] S. Watanabe - S. Ikeda - F. Ikeda, On a metrical Finsler connection of a generalized Finsler metric gij(x,y)=e2σ (x,y) γ ij.
    [20] T. Yamazaki, On binocular visual space as an affinely connected space.
    [21] S. Yanagimoto, On a special two-dimensional Finsler space with rectilinear extremals.
    [22] H. Yasuda, On connections of a Finsler space.

18. Sapporo Symposium

September 22-26, 1983 (S58)
The hotel "Makomanai-heights", Sapporo and the hotel "Ōtaki Seminar House", Ōtaki
Finsler geometry
M. Hashiguchi, M. Kawaguchi
M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, F. Ikeda, S. Ikeda, H. Izumi, A. Kawaguchi, M. Kawaguchi, T*. Kawaguchi,
S. Kikuchi, M. Kitayama, M. Matsumoto, S. Numata, T. Okada, K. Ōkubo, T. Sakaguchi, H. Sato, Y. Sato, C. Shibata, H. Shimada,
M. Shimbo, Y. Tazawa, S. Watanabe, T. Yamada, S. Yamanoi, T.Yamazaki, H. Yasuda, M. Yoshida

    [1] T. Aikou - M. Hashiguchi, On generalized Berwald connections.
    [2] F. Ikeda, On conformal changes of generalized metrics.
    [3] S. Ikeda, A conformal structure of the gravitational field, II.
    [4] H. Izumi, On some special fields and their indicatric derivations in Finsler spaces.
    [5] A. Kawaguchi, I expect you the future of the symposium.
    [6] S. Kikuchi - M. Kitayama, On a Finsler space with Roijk=0.
    [7] M. Matsumoto, On induced Finsler connections.
    [8] S. Numata, On generalized Berwald spaces of G-saclar curvature.
    [9] T. Sakaguchi, On Finsler spaces with property H.
    [10] H. Sato, On a extension of gravity.
    [11] Y. Sato,  On α-entropy metrics.
    [12] C. Shibata - M. Kitayama, On Finsler spaces of constant positive curvature.
    [13] H. Shimada, On a Finsler space of constant positive curvature.
    [14] M. Shimbo, A geometrical approach to the behavior of granular materials in suspensions.
    [15] Y. Tazawa, A Finsler space with non-convex indicatrices whose geodesics play no significant role.
    [16] S. Watanabe, On some properties of generalized Finsler spaces.
    [17] H. Yasuda, On TMA-connections of a Finsler space and IS-spaces.
  
19. Kinosaki Symposium
   
November 13-16, 1984 (S59)
The hotel "Tsutaya Seiran-tei", Kinosaki
Finsler geometry
M. Hashiguchi, K. Ōkubo
T. Aikou, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda, H. Izumi, S. Kikuchi, M. Kitayama,
M. Matsumoto, S. Numata, T. Okada, K. Ōkubo, T. Sakaguchi, H. Sato, C. Shibata, H. Shimada,
Y. Takano, S. Watanabe, H. Yasuda, M. Yoshida

    [1] M. Fukui, On general paths spaces.
    [2] M. Hashiguchi, On Finsler connections compatible with their pair of two generalized Finsler metrics.
    [3] M. Hashiguchi - Y. Ichijyō, A report on the Romanian-Japanese Colloquium on Finsler Geometry held in Romania during 15-25 August 1984.
    [4] S. Hōjō, On distorted conformal changes of CΓ and the fundamental functions.
    [5] Y. Ichijyō, On almost Finsler structures.
    [6] F. Ikeda, On Finsler spaces satisfying the condition L²C²=f(x).
    [7] S. Ikeda, On the Finslerian metrical structures of the gravitational field, II.
    [8] H. Izumi, Some problems in special Finsler spaces.
    [9] H. Izumi, Non-holonomic frames in Finsler spaces, I. - Associated absolute parallel connection.
    [10] H. Izumi - T. Sakaguchi, On semi-C-reducible and *P-Finsler spaces.
    [11] M. Matsumoto, A theory of transformations of Finsler spaces.
    [12] S. Numata, Veblen identities in Finsler spaces.
    [13] S. Numata, Finsler spaces with a metric L=(exp ρ )L(r).
    [14] T. Okada, Pair connection on line bundle and projective connection.
    [15] K. Ōkubo, L(α ,ß)-metric spaces.
    [16] T. Sakaguchi, On Finsler spaces with property H, II.
    [17] C. Shibata - H. Shimada - M. Azuma, On normal curvature of a hypersurface of Finsler spaces.
    [18] S. Watanabe - H. Izumi, A report on the Colloquium on Differential Geometry held in Hungary during 26 August-1September, 1984.
    [19] H. Yasuda, On CF-connections and TMA-connections of a Finlser space.
    [20] M. Yoshida, Curvature tensors on hypersurfaces of a Finsler space endowed with TM-connections.

   

 20. Kagoshima Symposium
  
July 29 - August 1, 1985 (S60)
The hotel "Keiten-kaku", Kagoshima
Finsler geometry
M. Hashiguchi, T. Aikou
T. Aikou, Gh. Atanasiu, M. Azuma, M. Fukui, M. Hashiguchi, N. Hitotsuyanagi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda,
H. Izumi, S. Kanda, H. Kawaguchi, T. Kawaguchi, U.-H. Ki, S. Kikuchi, M. Kitayama, M. Matsumoto, R. Miron,
T. Nagano, H. Nakagawa, S. Numata, T. Okada, K. Ōkubo, T. Sakaguchi, H. Sato, C. Shibata, H. Shimada, S. Watanabe,
T. Yamada, K. Yamauchi, H. Yasuda, M. Yoshida

    [1] T. Aikou - M. Hashiguchi, On some expressions of non-metrical Finsler connections.
    [2] Gh. Atanasiu, Remarkable Finsler connections on vector bundles. The uniqueness of the canonical Finsler connection on a vector bundle.
    [3] Gh. Atanasiu - M. Hashiguchi - R. Miron, On metrical Finsler connecttions of a generalized Finsler space with some additional structures.
    [4] M. Fukui, Applications to the intrinsec Gauss-Codazzi equations with respect to the Cartan connection.
    [5] S. Hōjō, On some T-reducible metric functions on Finsler manifolds.
    [6] Y. Ichijyō, On some G-structures defined on tangent bundle.
    [7] F. Ikeda, On generalized Finsler spaces whose associated Finsler space is a Riemannian space.
    [8] S. Ikeda, On the Finslerian metrical structure of the gravitational field, III.
    [9] H. Izumi, On geodesic circle in hypersurface of Finsler geometry.
    [10] H. Kawaguchi, On an almost complex structure in Finsler spaces.
    [11] S. Kikuchi, On positive definite Finsler space satisfying the T-condition.
    [12] M. Kitayama -A. Sato -C. Shibata, On examples of Finslerian hypersurfaces with certain properties.
    [13] M. Matsumoto, Transversal hypersurfaces and minimal hypersurfaces of a Finsler space.
    [14] R. Miron, On the Finslerian theory of relativity.
    [15] S. Numata, On (γ ,ß)-metrics, where γ =( aijk (x) yiyjyk)1/3, β =bi(x)yi.
    [16] T. Okada, Quasi pair-connection on line bundle and projective connection of Finsler space.
    [17] K. Ōkubo, Different viewpoints of S3-like space.
    [18] T. Sakaguchi, On semi-C-reducible and *P-Finsler spaces, II.
    [19] H. Sato, Geometrical description of the source in field theory.
    [20] C. Shibata, On Finsler spaces whose infinitesimal N-natural transformations are all isometry.
    [21] H. Shimada - C. Shibata - M. Azuma, On Bejancu's conjecture of Finsler hypersurface.
    [22] S. Watanabe - F. Ikeda, A remark on Matsumoto's problem.
    [23] T. Yamada, On Finsler hypersurfaces satisfying a certain condition.
    [24] H. Yasuda, On subspaces of a Finsler space.
    [25] H. Yasuda - M. Yoshida, On special hypersurfaces of a Finsler space.

21. Yokosuka Symposium  
  
October 15-18, 1986 (S61)
The Defense Academy, Yokosuka
Finsler geometry
M. Hashiguchi, H. Izumi
T. Aikou, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda, S. Ishihara, H. Ishikawa,
H. Izumi, S. Karita, H. Kawaguchi, S. Kikuchi, M. Kitayama, T. Koyama, M. Matsumoto, T. Nagano, T. Okada,
K. Ōkubo, T. Sakaguchi, H. Sato, C. Shibata, H. Shimada, Y. Takano, Y. Tazawa, S. Watanabe, T. Yamanoi,
K. Yamauchi, H. Yasuda, M. Yoshida

    [1] O. Amici - B. Casciaro - M. Hashiguchi, Some remarks on Finsler metrics associated with a Lagrangian function.
    [2] Y. Ichijyō, On the Finsler group and an almost symplectic structure on tangent bundle.
    [3] H. Izumi, Non-holonomic frames in a tangent bundle.
    [4] T. Sakaguchi, Parallelizable generalized lagrange spaces.
    [5] S. Ishihara, On lift to tangent bundle.
    [6] M. Matsumoto, A slope of a mountain is a Finsler surface with respect  to the time-mass.
    [7] T. Yamanoi - T. Koyama - M. Kawaguchi -  M. Matsumoto, Finsler geometrical interpretation of visual illusions in stream-shaped texture, II.
    [8] C. Shibata, On infinitesimal N-natural transformations of Finsler spaces.
    [9] K. Yamauchi, On infinitesimal conformal transformations in tangent bundles over a Finsler space, II.
    [10] S. Karita, Some properties related to the T-condition of Finsler spaces.
    [11] M. Fukui, Complex Finsler manifolds.
    [12] H. Yasuda, On connections with deflection tensors in a Finsler space.
    [13] H. Yasuda -M. Yoshida, A study of connections on hypersurfaces in a Finsler space.
    [14] Y. Ichijyō - R. Miron, On some structures defined on dominant vector bundles.
    [15] H. Shimada, On the almost complex structures of tangent bundle.
    [16] K. Ōkubo, Theory of Lagrange geometry.
    [17] S. Hōjō, On invariant connections on homogeneous spaces.
    [18] R. Miron - H. Izumi, Invariant frame in generalized metric spaces.
    [19] T. Aikou - T. Nagano, On colinear changes of Finsler connections.
    [20] C. Udriste - M. Fukui, On the ranks of curvature tensors in Finsler manifolds.
    [21] T. Yamada, On totally geodesic hypersurfaces.
    [22] M. Kitayama - A. Sato, Remarks on special Finsler with Roijk=0.
    [23] F. Ikeda, Some remarks on Landsberg spaces.
    [24] S. Ikeda, On the theory of nonlocalized gravitational field in Finsler spaces.
    [25] M. Matsumoto, "Italian-Romanian-Japanese Colloquium on Lagrange 'Finsler) Geometry and Applications to Theoretical Physics, 1988".

22. Asahikawa Symposium
 
August 5-8, 1987 (S62)
The hotel "Komasuka-sō" and the hotel "Baden Kamifurano"
Higashikawa, Kamifurano
Finsler geometry
C. Shibata, H. Yasuda
T. Aikou, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda, H. Izumi, S. Kikuchi,
M. Kitayama, M. Matsumoto, T. Nagano, K. Nagata, S. Numata, T. Okada, K. Ōkubo, T. Sakaguchi, H. Sato, Y. Sato,
C. Shibata, H. Shimada, K. Sukawa, S. Watanabe, K. Yamauchi, T. Yamada, T. Yamanoi, H. Yasuda, M. Yoshida

    [1] O. Amici - B. Casciaro - M. Hashiguchi, On F-regular Lagrangians.
    [2] T. Aikou - T. Nagano, On conformal changes of generalized Finsler metric.
    [3] H. Izumi, On the geometry of the generalized metric spaces I, connections and identities.
    [4] H. Izumi - M. Yoshida, On the geometry of generalized metric  spaces II, isotropic curvature.
    [5] T. Yamada, On hypersurfaces in a Finsler space with F=0.
    [6] H. Yasuda, Special subspaces in a Finsler space.
    [7] F. Ikeda, On Finsler spaces with the T-tensor satisfying special conditions.
    [8] H. Sato, Lagrangian and Hamiltonian Mechanics.
    [9] S. Ikeda, On the theory of non-localized gravitational field in Finsler spaces, II.
    [10] K. Ōkubo, Lagrange geometry.
    [11] H. Shimada - M. Azuma, On the Lagrange geometry and Hamiltonian geometry.
    [12] S. Kikuchi, On metrical Finsler connections of generalized Finsler spaces.
    [13] M. Fukui, Complex Finsler manifolds II.
    [14] S. Hōjō, On connections of Cartan type.
    [15] T. Okada, On the metric lifted to the relative line bundle on a Riemannian manifold.
    [16] M. Matsumoto, Projective theories of Finsler spaces.
    [17]  R. Miron - S. Kikuchi - T. Sakaguchi, Subspaces in generalized Lagrange spaces endowed with h-metrical connection.
    [18] T. Sakaguchi, Subspaces in Finsler space.
    [19] Y. Sato, On a multidimensional scaling by the Minkowski metric function.
    [20] Y. Ichijyō, The D(o(n))-structures in tangent bundles.
    [21] K. Yamauchi, On infinitesimal conformal transformations in tangent bundles over a Finsler space, II.
    [22] H. Sato, Gravitational field of space of higher order.
    [23] T. Yamanoi - K. Sukawa - M. Matsumoto, Finsler geometrical interpretation of visual illusions in stream-shaped texture, II.
    [24] C. Shibata, Information geometry.
    [25] M. Kitayama, On a hypersurface of Finsler spaces with Roijk=0.

23. Shiobara Symposium

October 26-29, 1988 (S63)
The hotel "Moiji-sō", Nasu-Shiobara
Finsler geometry
C. Shibata, S. Kikuchi
T. Aikou, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda, H. Izumi, S. Karita, H. Kawaguchi,
T. Kawaguchi, S. Kikuchi, M. Kitayama, M. Matsumoto, T. Nagano, K. Nagata, T. Okada, K. Ōkubo, T. Sakaguchi, H. Sato,
C. Shibata, H. Shimada, S. Watanabe, X.Z. Wei, K. Yamauchi, H. Yasuda, M. Yoshida

    [1] T. Aikou, On infinitesimal automorphisms of D(GL(n,R))-structures.
    [2] M. Fukui, On the Kähler form in Finsler geometry.
    [3] Y. Ichijyō, Conformal curvature tensors of generalized Finsler metric.
    [4] S. Ikeda, On the Field Equations in theTheory of Gravitational Field in Finsler space.
    [5] F. Ikeda, Some remarks on the deflection tensor.
    [6] M. Hashiguchi, Some remarks on linear Finsler connections.
    [7] H. Izumi, On projectively flat of a generalized metric space.
    [8] H. Izumi - M. Yoshida - T. Sakaguchi, On generalized metric spaces with special forms of curvature tensors.
    [9] M. Kitayama, On Finsler spaces with concurrent vector fields.
    [10] M. Matsumoto, Contributions of prescribed supporting element and the Cartan Y-connection
    [11] M. Matsumoto, On conformal changes of Finsler metrics.
    [12] R. Miron - S. Kikuchi - T. Sakaguchi, Subspaces in generalized Hamilton spaces endowed with h-metrical connections.
    [13] K. Ōkubo, Non-homogeneous Lagrangian metric function.
    [14] T. Sakaguchi - H. Izumi, On generalized metric spaces of scalar curvature.
    [15] H. Sato, Quantum field theories in Finsler space-times.
    [16] C. Shibata - M. Azuma - M. Kitayama, On connections of Berwld type.
    [17] H. Shimada, Almost complex structures of cotangent bundle.
    [18] S. Watanabe, On generalized Finsler spaces.
    [19] X.Z. Wei, On Finsler spaces of constant curvature.
    [20] H. Yasuda, Connections on subspaces in Finsler space.
    [21] K. Yamauchi, On projective change and conformal change of Finsler space.

24. Awara Symposium

September 29- October 2, 1989 (H1)
Awara Service Training Institute, Awara Fukui
Finsler geometry
C. Shibata, S. Kitamura
T. Aikou, P.L. Antonelli, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, F. Ikeda, S. Ikeda, H. Izumi, S. Kikuchi, S. Kitamura,
M. Kitayama, M. Matsumoto, T. Okada, K. Ōkubo, T. Sakaguchi, H. Sato, C. Shibata, H. Shimada, S. Watanabe,
K. Yamauchi, M. Yoshida, L. Tammasy*, R.S. Ingarden*

    [1] Y. Ichijyō - M. Hashiguchi, On conformally flat Randers spaces.
    [2] S. Watanabe,  On generalized Berwald P1-connection.
    [3] M. Matsumoto, Randers spaces of constant curvature.
    [4] K. Yamauchi, On infinitesimal conformal transformations of Finsler spaces.
    [5] P.L. Antonelli, On Finsler spaces of constant connection and Ecology.
    [6] H. Izumi - M. Yoshida - T. Sakaguchi, Generalized metric spaces and its associated Finsler spaces.
    [7] H. Shimada, Cartan-like connections of special generalized Finsler spaces.
    [8] M. Kitayama, On the Euclidian product of Finsler spaces with Roijk=0.
    [9] F. Ikeda, Some remarks on the deflection tensor, II.
    [10] K. Ōkubo, Invariant connection.
    [11] R.S. Ingarden - L. Tammasy (T. Okada*), On  parabolic trigonometry  in a degenerated Minkowski plane.
    [12] S. Ikeda, Some remarks on the Lagrangian theory of electromagnetism.
    [13] M. Fukui, Infinitesimal affine transformations in Finsler geometry.
    [14] T. Aikou, Some remarks on change of non-linear connections.
   
25. Gunma Symposium

September 30 - October 3, 1990 (H2)
Kusatsu Seminar House, the hotel "Kyorai-sō", Kusatsu, Minakami Gunma
Finsler geometry
C. Shibata, H. Sato
T. Aikou, M. Azuma, M. Hashiguchi, S. Hōjō, F. Ikeda, S. Ikeda, H. Izumi, S. Kikuchi, M. Kitayama, M. Matsumoto,
T. Okada, K. Ōkubo, T. Ono, T. Sakaguchi, H. Sato, C. Shibata, H. Shimada, S. Watanabe, H. Yasuda, M. Yoshida

    [1] M. Anastasiei - H. Shimada, Cross-section submanifold in tangent bundle.
    [2] T. Aikou - Y. Ichijyō, Finsler-Weyl structure and conformal flatness.
    [3] H. Yasuda, On special subspaces in a Finsler space.
    [4] Y. Watanabe - M. Hashiguchi, On a lecture addressed to the Tokyo history of mathematics symposium 1990.
    [5] M. Hashiguchi - T. Aikou - K. Yamauchi, A Matsumoto space - a Finsler space with time measure.
    [6] M. Matsumoto, Report on recent four papers.
    [7] S. Watanabe, Some remarks on the generalized Berwald P1-connection with Rijk= - Aijk.
    [8] M. Kitayama, On certain relations between the tangent bundle of Finsler spaces and the tangent bundles of its osculating Riemann spaces.
    [9] S. Kikuchi, On the conditions that a Kropina space be locally Minkowskian.
    [10] T. Okada, A model of  non-Minkowskian geometry.
    [11] T. Ono, The differential geometry of spaces whose metric tensor depends on spinor variable and the theory of spinor gauge fields.
    [12] C. Shibata, Conformal Finsler connections of a Finsler space.
    [13] F. Ikeda, On Finsler spaces with the non-zero constant function L²C².
    [14] T. Sakaguchi, Parallelizable generalized Hamilton spaces.
    [15] K. Ōkubo, Geometrical objects constructed from symmetric tensors.
   
26. Kushiro Symposium

October 5-8, 1991 (H3)
Kushiro College, Hokkaido University of Education
Kushiro
Finsler geometry
C. Shibata, M. Kitayama
T. Aikou, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, F. Ikeda, S. Ikeda, N. Innami, H. Izumi, H. Kawaguchi, T. Kawaguchi,
S. Kikuchi, M. Kitayama, M. Matsumoto, T. Okada, K. Ōkubo, Hong-Suh Park, T. Sakaguchi, H. Sato, C. Shibata, H. Shimada,
S. Watanabe, T. Yamada, K. Yamauchi, H. Yasuda, M. Yoshida

    [1] Hong-Suh Park, On projective mapping of recurrent Finsler spaces.
    [2] F. Ikeda, On three-dimensional Finsler spaces with non-zero constant unified main scalar.
    [3] K. Ōkubo, The Lagrangian function L=(aijyiyj)/2-biyi.
    [4] T. Yamada, On special TMD-connection on Finsler space.
    [5] N. Innami, Generalized metrics for a variational principle of positively homogeneous functions.
    [6] M. Fukui, Hermite metrics in complex Finsler manifolds.
    [7] H. Izumi - T. Sakaguchi - M. Yoshida,  On RMn spaces with Cij=λ hij.
    [8] T. Sakaguchi, On g-C-reducible generalized metric spaces.
    [9] K. Yamauchi - M. Hashiguchi, On infinitesimal conformal transformations in a Finsler space with (α ,ß)-metric.
    [10] T. Okada, The projective connection of Finsler space from the viewpoint of the fiber bundle.
    [11] T. Aikou, A remark on holomorphic sectional curvature of complex Finsler manifolds.
    [12] H. Kawaguchi, On P-reducible Finsler spaces.
    [13] S. Ikeda, On the theory of gravitational field in Finsler spaces.
    [14] H. Sato, A role of non-linear connections in Finslerian gravity.
    [15] T. Kawaguchi, On the Lagrange theory.
    [16] S. Hōjō, On extremals of variational problem of certain Lagrangian functions.
    [17] M. Matsumoto, 1) Main scalar of Finsler spaces with 1-form metric and (α ,ß)-metric.
                                    
2) On Barthel connection defined in 1953.
    [18] H. Yasuda, Special subspaces in a Finsler space.
    [19] M. Kitayama, On the tangent bundles of Finsler spaces with (α ,ß)-metrics.
    [20] M. Hashiguchi, On the Finsler - geometrical expression of the Gaussian curvature of a hypersurface in a Euclidian space.
    [21] P.L. Antonelli - H. Shimada, On 1-form Finsler connections with constant coefficients.
    [22] C. Shibata - M. Azuma, On C-conformal invariant tensors of Finsler metrics.

27. Kobe Symposium

October 9-12, 1992 (H4)
"Gosha-ryō", Arima Kobe
Finsler geometry
C. Shibata, S. Hōjō
T. Aikou, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, F. Ikeda, S. Ikeda, N. Innami, H. Izumi, Y. Ichijyō, H. Kawaguchi,
T. Kawaguchi, C. Kimura, S. Kikuchi, S. Kitamura, M. Kitayama, L. Kózma, M. Matsumoto, Y. Nagata, T. Okada, K. Ōkubo,
T. Otsuji, T. Sakaguchi, H. Sato, C. Shibata, H. Shimada, S. Watanabe, T. Yamada, K. Yamauchi, H. Yasuda, M. Yoshida

    [1] N. Innami, Locally Riemannian metrics for flows which satisfy Huygen's priciple.
    [2] C. Shibata, Minkowskian product of complex Finsler manifolds.
    [3] H. Shimada, On Finsler metric derived from the Ecology.
    [4] H. Yasuda, A note on subspaces of a Finsler space.
    [5] F. Ikeda, On three-dimensional Finsler space.
    [6] S.Watanabe, On Finsler spaces satisfying Phijk= - Ahijk.
    [7] L. Kózma, On osculation of geodesics of a Finsler pair connection.
    [8] T. Sakaguchi, On generalized metric spaces with Cij=λ hij.
    [9] H. Izumi - T. Sakaguchi - M. Yoshida, On Mn spaces with Cij=λ hij.
    [10] H. Kawaguchi, A geometrical meaning of the P-reducible condition in Finsler spaces.
    [11] T. Yamada, On projective change.
    [12] K. Yamauchi, On scalar curvatures of tangent bundles of Riemannian manifolds.
    [13] S. Kikuchi - M. Kitayama, On metrical Finsler connections with torsion Tjik of generalized Finsler spaces.
    [14] T. Kawaguchi, Relativistic optics in strongly dispersive media.
    [15] Y. Ichijyō, Conformal geometry of Finsler spaces.
    [16] T. Aikou - M. Hashiguchi - R. Miron, On minimality of axiomatic systems of remarkable Finsler connections.
    [17] T. Aikou, Some remarks on the geometry of tangent bundles of Finsler spaces.
    [18] M. Matsumoto, Conformal change of two-dimensional Finsler space and the curvature of one-form metric.
    [19] S. Hōjō, On Finsler metric L²=2ε α β.
    [20] M. Azuma, On Finsler spaces with (α ,ß)-metric satisfying Ci=0.
    [21] Y. Ichijyō - M. Hashiguchi, On flatness of generalized (α ,ß)-metrics.

28. Tsukuba Symposium

September 23-25, 1993 (H5)
Tsukuba
Finsler geometry
C. Shibata,
T. Aikou, M. Azuma, H. Endo, M. Fukui, M. Hashiguchi, S. Hōjō, F. Ikeda, S. Ikeda, T. Igarashi, H. Kawaguchi, T. Kawaguchi,
C. Kimura, S. Kikuchi, M. Kitayama, M. Matsumoto, R. Miron, T. Nagano, T. Okada, K. Ōkubo, H.-S. Park, T. Sakaguchi,
I. Sandu, C. Shibata, H. Shimada, Y. Takano. S. Watanabe, T. Yamada, K. Yamauchi, H. Yasuda, M. Yawata, M. Yoshida

    [1]
S. Ikeda, Some generalized connections of Finsler space-time structure.
    [2] M. Matsumoto, From geodesics to the metric (inverse problem).
    [3] M. Matsumoto, The equations of turbulent flow and Finsler metrics.
    [4] T. Sakaguchi - H. Izumi - M. Yoshida, On a g-Landsberg space of scalar curvature K, I.
    [5] T. Sakaguchi - H. Izumi - M. Yoshida, On a g-Landsberg space of scalar curvature K, II.
    [6] S. Kikuchi, On the condition that a Finsler space be conformally flat.
    [7] K.Yamauchi, On infinitesimal conformal transformations of the tangent bundle over Riemannian manifolds.
    [8] F. Ikeda, On three-dimensional Finsler spaces, II.
    [9] M. Yawata, Almost 2-π structures in tangent bundle and in Finsler spaces.
    [10] H. Endo, New geometrical properties of the almost contact structure.
    [11] R. Miron, Higher order metric spaces as extension of generalized Lagrange spaces.
    [12] R. Miron - T. Kawaguchi, Higher order Lagrangian theory of the relativistic optics.
    [13] T. Igarashi, Lie derivatives in cotangent bundle and in Cartan spaces.
    [14] H.-S. Park, On nearly Kählerian Finsler manifolds.
    [15] T. Yamada, On projective changes in Finsler spaces.
    [16] T. Aikou, Some remarks on the geometry of tangent bundle of Finsler manifolds.
    [17] T. Aikou, Some remarks on the geometry of tangent bundle of Finsler spaces, II.
    [18]
M. KirkowitzT. Otsuji - T. Aikou, Some remarks on automorphisms of Finsler bundle.
    [18] Y. Ichijyō - M. Hashiguchi, On conformally flat generalized (α ,ß)-metrics.
    [19] S. Watanabe - M. Kitayama, On the hv-curvature tensors.
    [20] C. Shibata, On Finsler space with L=α1-r(x) ßr(x).
    [21] H. Yasuda, On special subspaces of a Finsler space.
    [22] K. Ōkubo, Hypersurfaces of 3-dimensional Minkowskian spaces.
    [23] S. Hōjō, On pointwise homogeneous Lagrangian functions and special Finsler metrics.
    [24] S. Hōjō, Fundamental function with (α ,ß)-metric under the condition Ci=0.
    [25] T. Okada, Hyperbolic hypersurfaces in Minkowski spaces.
    [26] M. Azuma, On the solution of differential equations derived from (α ,ß)-metric.
    [27] H. Shimada, On Finsler metric derived from the Ecology.
    [28] M. Fukui, On Hermite metrics in Finsler geometry.

29. Nagahama Symposium

September  30 - October 3,  1994  (H6)
Nagahama
Finsler geometry
K. Ōkubo
T. Aikou, P.L. Antonelli, M. Azuma, C.S. Bagewadi, I. Hasegawa, M. Hashiguchi, S. Hōjō, F. Ikeda, H. Izumi, Y. Ichijyō,
T. Igarashi, H. Kawaguchi, M. Kitayama, M. Matsumoto, T. Nagano, H.G. Nagaraja, K. Ōkubo, T. Sakaguchi,
H. Shimada, S. Watanabe, K. Yamauchi, H. Yasuda, K.Yamauchi, M.Yoshida

    [1] H. Yasuda, On special subspaces of a Finsler space.
    [2] P.L. Antonelli - M. Matsumoto, Two-dimensional Finsler spaces of locally constant connection.
    [3] T. Nagano, On 1-form metrics induced from a matrix.
    [4] K. Ōkubo, A new approach to the geometry.
    [5] F. Ikeda, On relations between the main scalars of three-dimensional Finsler space and the main scalar of its hypersurface.
    [6] S. Watanabe - M. Kitayama, On hv-curvature tensors and special Finsler spaces.
    [7] T. Aikou, A complex manifolds modeled on a complex  Minkowski space.
    [8] Y. Ichijyō, On Kählerian Finsler manifolds.
    [9] Y. Ichijyō - M. Hashiguchi, On (a,b, f)-metrics.
    [10] T. Sakaguchi (lectured by M. Yoshida), On generalized metric spaces with Cjik=F-1liCjk.
    [11] I. Hasegawa - K. Yamauchi - H. Shimada, Sasakian structure on Finsler manifolds.
    [12] T. Igarashi, On a class of (α ,ß)-metrics in Finsler spaces.
    [13] S. Hōjō, On Finsler spaces with metric function L=(αk +ßk)1/k.
    [14] H.G. Nagaraja - C.S. Bagewadi - H. Izumi, On infinitesimal h-conformal motions of Finsler metric.
    [15] H. Kawaguchi, On the example of P-reducible Finsler spaces.
    [16] M. Azuma, On the (α ,ß)-metric functions with Ci=0.
    [17] H. Izumi, On conformal change of Finsler metric.
   
30. Nagasaki Symposium

November 13-16, 1995 (H7)
Nagasaki
Finsler geometry
K. Ōkubo
T. Aikou, M. Azuma, C. Dariescu, M. Dariescu, M. Fukui, I. Hasegawa, M. Hashiguchi, S. Hōjō, D. Hrimiuc, F. Ikeda, S. Ikeda,
N. Innami, H. Izumi, Y. Ichijyō, N. Jogasaki, T. Kawaguchi, S. Kikuchi, M. Kitayama, M. Matsumoto, T. Nagano, T. Okada,
K. Ōkubo, H.-S. Park, M. Postolache, T. Sakaguchi, H. Sato, H. Shimada, K. Yamauchi, A. Yatsusiro, M.Yoshida, R. Yoshikawa

    [1] T. Sakaguchi, On g-C-semireducible generalized metric spaces.
    [2] F. Ikeda, On three-dimensional Finsler spaces without the Kikuchi's condition for conformal flatness.
    [3] M. Kitayama - M. Azuma - M. Matsumoto, On Finsler spaces with (α ,ß)-metric. Regularity, geodesics and main scalars.
    [4] M. Matsumoto, Theory of Finsler spaces with m-th root metric.
    [5] Y. Ichijyō, On Finsler metrics compatible with f-structures.
    [6] N. Innami, Some relations among volume, surface area and inward injectivity.
    [7] M. Postolache - T. Kawaguchi, On the geometrical structure of a magnetic field.
    [8] S. Ikeda, On the second-order gauge transformation in the Finslerian gravitational field.
    [9] T. Aikou, Some remarks on Einstein-Finsler vector bundles.
    [10] M. Hashiguchi - Y. Ichijyō, On the condition that an (a,b,f)-manifold be a Berwald space.
    [11] H-S. Park,  On a Finsler space with a special (α ,ß)-metric.
    [12] T. Nagano, On Finsler metrics and connections of a manifold M with a matrix-valued function on T(M).
    [13] R. Yoshikawa - K. Ōkubo, Two-dimensional, conformally flat Finsler spaces.
    [14] H. Izumi - M. Yoshida, A survey of conformal changes of Finsler metric and h-condition.
    [15] D. Hrimiuc - H. Shimada, On the L-duality between Lagrange and Hamilton manifolds.
    [16] D. Hrimiuc, The Cartan connection for special GL-spaces.
  
31. Chiba Symposium

November 6-9, 1996 (H8)
Chiba
Finsler geometry
K. Ōkubo
T. Aikou, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, F. Ikeda, S. Ikeda, H. Ishikawa, H. Izumi, N. Jogasaki,
S. Kikuchi, M. Kitayama, M. Matsumoto, T. Nagano, K. Ōkubo, H.-S. Park, V.S. Sabău, T. Sakaguchi, K. Sato,
H. Sato, H. Shimada, M.Yawata, M.Yoshida, R.Yoshikawa

    [1] H. Shimada, On some special problems concerning the L-duality between Finsler and Cartan spaces.
    [2] M. Kitayama, On Finsler spaces with a paralle vector field.
    [3] T. Sakaguchi, On generalized metric spaces with Cijk=F-1Cik lj +(1/C²)CiCjCk.
    [4] M. Matsumoto, Reduction theorem of Finsler spaces.
    [5] H-S. Park, On Finsler metrics compatible with Φ ( 4,2)-structures.
    [6] M. Hashiguchi, A remark on a conformally flat Randers metric.
    [7] H. Izumi - M. Yoshida - T. Sakaguchi, The conditions of conformally flat Finsler spaces ( A survey of conformal change of  Finsler metric, II).
    [8] H. Ishikawa, On causal, Finsler and fuzzy structure.
    [9] T. Aikou, A vanishing theorem on convex Finsler vector bundles.
    [10] V.S. Sabău - H. Shimada, On the canonical nonlinear connection of the higher order osculator bundle.
    [11] S. Ikeda, Some structural considerations on the Finslerian gravitational field.
    [12] S. Bácsó - M. Matsumoto, Generalized Berwald spaces and Wagner spaces.
    [13] K. Sano - K. Ōkubo, The notion of the hyperbolic angle in the indefinite metric space.
    [14] F. Ikeda, On conformal flatness of Finsler spaces.
    [15] M. Azuma, On the differential equation  Yn+1n-2 Ÿ =Ctn-2.
  
32. Ise Symposium

November 5-8, 1997 (H9)
Ise
Finsler geometry
K. Ōkubo
T. Aikou, M. Azuma, S. Bácsó, M. Fukui, M. Hashiguchi, S. Hōjō, F. Ikeda, S. Ikeda, R. Ivanova, H. Izumi,
T. Kawaguchi, S. Kikuchi, M. Kitayama, L. Kózma, M. Matsumoto, T. Nagano, K. Ōkubo, H.-S. Park, V.S. Sabău,
T. Sakaguchi, K. Sano, H. Sato, H. Shimada, M.Yawata, M.Yoshida, R. Yoshikawa

    [1] S. Bácsó - M. Matsumoto, Finsler spaces of Douglas type.
    [2] S. Bácsó, Some remarks on geodesic mappings of special Finsler space.
    [3] L. Kózma, On holonomy groups of Landsberg manifolds.
    [4] L. Kózma - S. Baran, On metrical homogeneous connections of a Finsler point space.
    [5] M. Matsumoto - H-S. Park, Equations of geodesics in two-dimensional Finsler spaces with (α ,ß)-metric.
    [6] F. Ikeda, On Landsberg spaces satisfying the T-condition.
    [7] S. Ikeda, Some remarks on the connection structures of the Finslerian gravitational field.
    [8] V.S. Sabău, Abstract on the variational problem in second order relativistic optics.
    [9] R. Miron - V.S. Sabău - H. Shimada, Abstract from the higher order Finsler spaces.
    [10] M. Kitayama, On Finslerian hypersurfaces given by ß-changes.
    [11] M. Kitayama, Generalized Finsler spaces admitting a parallel Finsler vector field.
    [12] T. Aikou, A note on the conformally invariant curvature of complex Finsler structure.
    [13] T. Nagano, On Finsler metrics derived from a Riemannian metric and a vector field with parameter.
    [14] M. Hashiguchi, A remark on a conformally flat Randers metric, II.
    [15] M. Yawata, On the curvature like tensor of type (1,5).
    [16] R. Yoshikawa, The m-th root metric with Ci=0.
    [17] K. Sano - K. Ōkubo, Three dimensional hyperbolic geometry.
    [18] R. Ivanova - T. Kawaguchi, On the representation of some important characteristics in information geometry.
    [19] H. Izumi - M. Yoshida - T. Sakaguchi, On geodesic circles on a hypersurface of a Finsler space.
    [20] V.S. Sabău, Scientific activities of Prof. Radu Miron.

33. Lake Yamanaka Symposium

October 21-24, 1998 (H10)
Lake Yamanaka
Finsler geometry
K. Ōkubo
T. Aikou, M. Azuma, H. Endo, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda, S. Ikeda, H. Izumi,
T. Kawaguchi, H. Kawaguchi, S. Kikuchi, M. Kitayama, I.-Y. Lee, M. Matsumoto, T. Nagano, K. Ōkubo,
H.-S. Park, V.S. Sabău, T. Sakaguchi, K. Sano, H. Sato, H. Shimada, M.Yoshida, R. Yoshikawa

    [1] T. Aikou, Some remarks on the Finsler vector bundle modeled on a complex Minkowski space.
    [2] M. Fukui, On complex (α ,ß)-metrics.
    [3] M. Matsumoto, The stretch curvature of a Finsler space and certain open problems.
    [4] T. Nagano, On models of generalized Finsler spaces.
    [5] H. Sato, Study on geometrization of physical  quantities.
    [6] M. Anastasiei - H. Shimada, The Beil metrics associated to a Finsler space.
    [7] V.S. Sabău, On a transformation of Rund connection.
    [8] M. Matsumoto - H-S. Park, Equations of geodesics in two-dimensional Finsler spaces with (α ,ß)-metric, II.
    [9] I.-Y. Lee, Projective changes between a Finsler space with (α ,ß)-metric and the associated Riemann space.
    [10] F. Ikeda, On S4-like Finsler spaces with T-condition.
    [11] M. Matsumoto, Projectively flat Finsler spaces on the basis of the theory of Douglas spaces.
    [12] T. Sakaguchi, On general Randers spaces.
    [13] Y. Ichijyō, Kählerian Finsler manifolds of Chern type.
    [14] M. Kitayama, On contact structures of indicatrix bundle.
    [15] K. Sano - K. Ōkubo, Four dimensional indefinie metric geometry.
    [16] R. Yoshikawa, The three-dimensional conformally flat Finsler space with cubic metric satisfying Ci≠ 0.
    [17] H. Endo, Two results on contact metric manifolds.
    [18] M. Matsumoto, A history of Finsler geometry.
   
34. Hakodate Symposium

September 16 -19, 1999 (H11)
Hakodate
Finsler geometry
K. Ōkubo
T. Aikou, M. Azuma, B. Barua, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda,  S. Ikeda, R. Ivanova,
T. Kawaguchi, H. Kawaguchi, S. Kikuchi, M. Kitayama, I.-Y. Lee, M. Matsumoto, T. Nagano, K. Ōkubo,
H.-S. Park, V.S. Sabău, T. Sakaguchi, K. Sano, H. Sato, H. Shimada, K. Yamauchi, M.Yawata

    [1] M. Matsumoto, Conformally closed Berwald spaces and Douglas spaces.
    [2] T. Aikou, Kähler fibrations and complex Finsler spaces.
    [3] B.Barua, An algebraic system in a Finsler space.
    [4] Y. Ichijyō, On the flatness of generalized Finsler manifolds and Kählerian Finsler manifolds of Chern type.
    [5] V.S. Sabău, Some remarks on the Gauss-Bonet theorem for Finsler spaces.
    [6] R. Miron - H. Shimada - V.S. Sabău, Abstract on new lifts of generalized lagrange metrics.
    [7] S. Ikeda, On the intrinsic behavior of the internal variable in the theory of fields in Finsler spaces.
    [8] M. Matsumoto - S. Bácsó, Finsler spaces with the h-curvature tensors dependent on position alone.
    [9] H.-S. Park - I.-Y. Lee, The Randers changes of Finsler spaces with (α ,ß)-metric of Douglas type.
    [10] R. Ivanova, On the sectional curvature of the almost hyperbolic Kählerian manifolds of indefinite metric.
    [11] M. Yawata, On the generalized curvature tensor of type (1,5).
    [12] K. Yamauchi, On conformal transformations in tangent bundles.
    [13] H. Sato, Study on disintegration mechanism of liquids.
    [14] M. Matsumoto - S. Bácsó, Examples of projectively flat spaces and spaces with Hx.
    [15] S. Hōjō - M. Matsumoto, On certain conformally Berwald Finsler spaces.
    [16] T. Nagano, On the singular Finsler spaces.
    [17] M. Kitayama, On indicatrix bundles subjected to ß-changes.
    [18] M. Kitayama - M. Azuma, On gradient vectors in Finsler spaces.
    [19] F. Ikeda, Some remarks on the Kikuchi's condition for conformally flat Finsler spaces.
    [20] V.S. Sabău - H. Shimada, Some remarks on Finsler spaces with (α ,ß)-metrics.

35. Kagoshima Symposium

November 23 - 26, 2000 (H12)
Kagoshima
Finsler geometry
K. Ōkubo
T. Aikou, P.L. Antonelli, M. Azuma, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, S. Ikeda, H. Izumi,
H. Kawaguchi, S. Kikuchi, M. Kitayama, I.-Y. Lee, M. Matsumoto, T. Nagano, K. Ōkubo, H.-S. Park, S.F. Rutz,
V.S. Sabău, T. Sakaguchi, H. Sato, H. Shimada, K. Yamauchi, M. Yawata, M. Yoshida

    [1] M. Matsumoto, Conformally Berwald and conformally flat Finsler spaces.
    [2] P.L. Antonelli - I. Bucataru, On Holland's frame for Randers and Kropina spaces.
    [3] V.S. Sabău, Projectively flat Finsler metrics corresponding to quadrics in CPn.
    [4] K. Yamauchi, On tangent bundles with Cheeger-Gromoll metric.
    [5] M. Yawata, On the integral formulas for Riemannian manifold.
    [6] M. Kitayama - M. Anastasiei, Finsler subspaces subjected to ß-changes.
    [7] M. Kitayama, Induced vector fields and metric transformatioms.
    [8] H. Sato, Study on geometrization of physical quantities, II.
    [9] T. Aikou, Projective flatness of complex Finsler metrics.
    [10] S.F. Rutz, A computer algebra package for Finsler geometries.
    [11] H.-S. Park, Conformal changes of Rizza manifolds.
    [12] M. Hashiguchi, On generalized Finsler structures I A.
    [13] Y. Ichijyō, On generalized Finsler structures I B.
    [14] H. Shimada - V.S. Sabău, On Finsler metrics of constant positive curvature.
    [15] I.-Y. Lee, On (G,N)-structures satisfying Pijk=0.
    [16] M. Matsumoto, Some remarks on Finsler spaces.
   
36. Lake Hamana Symposium

October 10-13, 2001 (H13)
Lake Hamana
Finsler geometry
K. Ōkubo
T. Aikou, M. Azuma, H. Endo, M. Fukui, M. Hashiguchi, S. Hōjō, Y. Ichijyō, F. Ikeda,  S. Ikeda, H. Izumi,
T. Kawaguchi, M. Kitayama, I.-Y. Lee, M. Matsumoto, T. Nagano, K. Ōkubo, H.-S. Park, V.S. Sabău,
T. Sakaguchi, H. Sato, H. Shimada, M.Yawata, R. Yoshikawa

    [1] M. Matsumoto, Randers spaces of constant curvature.
    [2] S. Ikeda, On the intrinsic behavior of the internal variable in the theory of fieldsin Finsler spaces.
    [3] F. Ikeda, On conformal flatness of semi C-reducible Finsler spaces.
    [4] M. Kitayama, Induced vector fields in a hypersurface of Riemannian tangent bundles.
    [5] M. Yawata, A certain linear map from the generalized curvature tensor of type (1,5) to the generalized curvature tensor of type (1,3).
    [6] R. Miron - H. Shimada - V.S. Sabău, Finsler spaces with (μ ,ß)-metric.
    [7] T. Aikou, A note on some special Finsler manifolds.
    [8] H. Izumi - T. Sakaguchi - M.Yoshida, Remarks on the assumptions generalized metric tensor  gij (x,y).
    [9] S. Bácsó - R. Yoshikawa, Weakly-Berwald spaces.
    [10] H.-S. Park - I.-Y. Lee, Finsler spaces with the general approximate Matsumoto metric.
    [11] T. Nagano, The geometry of singular Finsler spaces.
 
37. Tsukuba Symposium
(joint Symposium with The 6th International Conference of TENSOR Society
)
On ocassion of the Anniversary of "Akitsugu Kawaguchi's 100 years birth"

August 5-9, 2002 (H14)
Tsukuba International Congress Center, Tsukuba  
Finsler geometry 
H. Shimada
T. Aikou, M. Azuma, F.R. Al-Solamy, V. Blănuță, M. Craioveanu, I. Comic, H. Endo, S. Fueki, S.R. Guha, M. Hashiguchi,
K.S. Hedrich, F. Ikeda, S. Ikeda, M. Isu, Gh. Ivan, H. Izumi, T. Kashiwada, H. Kawaguchi, T. Kawaguchi, M. Kitayama,
L. Kózma, K. Matsumoto, M. Matsumoto, I.-Y. Lee, T. Nagano, A. Mihai, I. Mihai, R. Miron, P.S. Morey, K. Ōkubo,
H.-S. Park, M. Puta, R. Quraishi, V.S. Sabău, T. Sakaguchi, H. Sato, H. Shimada,  L. Tammásy, Y. Tazawa, M.Yawata
  
    [1] T. Aikou, A note on projectively flat Finsler metric.
    [2] F.R. Al-Solamy, Geometry of CR-submanifolds.
    [3] V. Blănuță - M.Yawata, Natural n-almost contact 2-π structures on Cartan spaces of order 2.
    [4] I. Comic - H. Kawaguchi, Different structures in the higher order geometries.
    [5] H. Endo, Non-existence of almost cosymplectic manifolds satisfying a certain condition.
    [6] I. Hasegawa - V.S. Sabău - H. Shimada, Some remarks on Randers spaces of constant flag curvature.
    [7] S. Ikeda, On the concept of nonlocalization associated with the theory of fields in Finsler spaces.
    [8] Gh. Ivan - M. Ivan, Refinements of the fibre bundle of affine frames.
    [9] J.B. Jun - K. Matsumoto - I. Mihai, Hypersurfaces with cyclic parallel Ricci tensor in a locally conformal Kähler space form.
    [10] M. Kitayama, On some relations of Finsler hypersurfaces.
    [11] L. Kózma, Holonomy groups of nonlinear connections.
    [12] M. Matsumoto, On theorems of K. Eguchi, S. Numata and C. Shibata.
    [13] A. Mihai, Certain Chen-like inequalities for slant submanifolds in generalized complex space forms.
    [14] I. Mihai, Ideal Kählerian slant submanifolds in complex space forms.
    [15] R. Miron - T. Kawaguchi, The notion of dual Kawaguchi spaces.
    [16] H.-S. Park - I.-Y. Lee, Projectively flat Finsler space with the approximate Matsumoto metric.
    [17] R. Quraishi, Relativistic geometries with torsion.
    [18] V.S. Sabău, On the geometry of linkage disquilibium.
    [19] L. Tammásy, Finsler geometry in the tangent bundle.
    [20] Y. Tazawa, Visualizing the proof of the Umlaufsatz.
    [21] M.Yawata, Semi-symmetric Riemannian manifold satisfying a certain condition.
    [22] K. Hedrih, Close meeting of the three fold kind at the begining of third millenium on tensor calculus break-impact in Mechanics.
    [23] P.S. Morey  Jr., Horizontal contractions of higher degree extensor, I.
    [24]
S.Ray-Guha, On fluid pseudo Ricci symmetric spacetime of general relativity.
    [25] M. Puta -  M. Butur - I, Caşu, Some remarks on the nonlinear optical polarization dynamics.
    [26] M. Craioveanu - I. Ioja - M. Puta, Some remarks on the rigid body with one control.
    [27] Gh. Ivan - D.Opriş, Old and new aspects in the study of refinements of a differentiable principal fiber bundle.
    [28]
T. Kashiwada, L.c.K.-structures and almost contact structures.